Таким образом, за время движения по спиральной орбите во внешней части тела центрального объекта галактики ядро спутника галактики постепенно изнутри формирует плоскую составляющую галактики в виде звездного диска галактики. Такие звездные диски были названы эллиптическими галактиками.
http://www.astronet.ru/db/msg/1162770 M32: голубые звезды в эллиптической галактике
3.11.1999
http://images.astronet.ru/pubd/2006/11/12/0001217660/m32_hst.jpg «Известно, что эллиптические галактики населены старыми красными звездами. Может быть данная старая эллиптическая галактика показывает нам какой-то фокус? За последнее время стало ясно, что ядра эллиптических галактик являются источником удивительно мощного голубого и ультрафиолетового света. Голубое излучение спиральных галактик обусловлено свечением массивных молодых горячих звезд, населяющих их. В свою очередь красноватое излучение эллиптических галактик происходит от свечения старых холодных звезд. На самом деле, цвет изображения на картинке искусственный, а само изображение получено на космическом телескопе им. Хаббла. На изображении показан центр соседней к нам карликовой эллиптической галактики M32, который разрешается на отдельные звезды. Действительно, центр состоит из тысяч ярких голубых звезд. . .»
В процессе движения во внешней части тела галактики ядро спутника галактики продолжает рождать ядра звездных ассоциаций, из которых до внедрения ядра спутника галактики в тело центрального объекта галактики формировалось тело центрального объекта галактики. Рождаемые ядра звездных ассоциаций, так же как и ядра звезд тела центрального объекта галактики, «катапультируются» в плоскую составляющую галактики. Так же как и ядра звезд, ядра звездных ассоциаций со временем наращивают свое тело и персональное пространство. В телах звездных ассоциаций не рождаются химические элементы, поэтому в отличие от тел звезд тела звездных ассоциаций пожизненно остаются оптически ненаблюдаемыми.
Со временем центральные объекты звездных ассоциаций рождают свои звезды.
http://www.astronet.ru/db/msg/1177376 NGC 4697: рентгеновское излучение из эллиптической галактики
17.06.2002
http://images.astronet.ru/pubd...._c1.jpg «Многие яркие точечные источники на этом рентгеновском снимке, полученном Обсерваторией Чандра, располагаются внутри эллиптической галактики NGC 4697. . . Рентгеновские источники происходят из нейтронных звезд и черных дыр в двойных звездных системах. . . Большое число рентгеновских двойных систем в галактике NGC 4697 находятся в . . . звездных скоплениях . . .»
http://www.astronet.ru/db/msg/1228588 27.06.2008
http://images.astronet.ru/pubd....800.jpg «. . . На врезке показано рентгеновское излучение от нескольких черных дыр в M81, включая черные дыры в двойных звездных системах, масса которых примерно в десять раз больше солнечной, а также от центральной сверхмассивной черной дыры, которая более чем в 70 миллионов раз тяжелее Солнца. . .»
Центральный объект звездной ассоциации и вращающиеся вокруг него рожденные им звезды представляют собой отдельный объект, аналогом которого является Солнце с вращающимися вокруг него планетами солнечной системы. Этот объект наблюдается в виде компактного звездного скопления. Такие объекты обнаружены и в центре нашей галактики:
http://www.rnd.cnews.ru/natur_s....8 У скопления Арки выявлены странные особенности
28.11.07
«Прецизионные наблюдения звездного скопления Арки (Arches cluster) с помощью телескопа VLT с системой адаптивной оптики на "лазерных звездах" позволили выявить у него целый ряд загадочных свойств, существенно меняющих наши представления о собственной Галактике.
Скопление Арки содержит около полутора сотен молодых, ярких и больших звезд (в среднем примерно в 20 раз массивнее Солнца) и при этом отличается удивительной компактностью - его радиус составляет около одного светового года. Два таких скопления могли бы полностью уместиться в промежутке между Солнцем и ближайшей к нему (из известных) звездой - Проксимой Центавра.
Уникальной особенностью скопления Арки является то, что оно расположено практически в самом центре нашей Галактики - всего в ста световых годах от него (и примерно на удалении 25 тыс. световых лет от Солнечной системы), где, согласно бытующим ныне представлениям, должна располагаться гигантская черная дыра.
Предполагается, что период существования чрезвычайно компактного скопления Арки должен быть весьма скоротечным по меркам Вселенной - от силы несколько миллионов лет. Примерно во столько (2 - 4 млн. лет) оценивается его нынешний возраст, но разваливаться оно, по-видимому, пока не собирается.
Как сообщает New Scientist, наблюдения с использованием метода адаптивной оптики на "лазерных звездах", позволяющей получить рекордно высокое угловое разрешение, выявили обескураживающе высокую скорость движения звезд скопления - только его составляющая, перпендикулярная лучу зрения, оценивается в 200 км/с.
Объяснить такую скорость движения скопления как целого чрезвычайно непросто…
В независимости от того, какая именно модель позволит объяснить существование скопления Арки, его дальнейшие исследования позволят лучше понять природу ядра Галактики и процессов, происходящих в нем - нынешние гипотезы, вероятно, далеки от реальности…»
После выхода ядра спутника галактики из тела центрального объекта галактики оно, лишившись своего «двигателя» прекращает вращение вокруг своей оси. С этого момента прекращается «подпитка» ядрами звезд и звездных ассоциаций плоской составляющей эллиптической галактики.
Форма и размеры эллиптических галактик зависят от того, вышло ли ядро спутника галактики за пределы тела центрального объекта галактики, или же оно еще остается в нем, продолжая поставлять в галактический диск ядра звезд и звездных ассоциаций. Поэтому форма и размеры галактики зависит от ее возраста.
Как бы не были велики запасы вещества в ядрах звезд и звездных ассоциаций, но и они, в конечном счете, заканчиваются. Поэтому наступает период медленной деградации эллиптической галактики.
В ядрах звезд содержится на одну иерархию меньше вещества, чем в ядрах звездных ассоциаций, поэтому в диске эллиптической галактики в первую очередь исчезают звезды, в свое время «выброшенные» из тела центрального объекта галактики. Так постепенно некогда стройная эллиптическая галактика теряет свою геометрическую форму и превращается в бесформенное образование, состоящее из центральных объектов звездных ассоциаций, удерживающих вокруг себя более молодые рожденные ими звезды.
Такие галактики называют неправильными, иррациональными галактиками. Количество неправильных галактик составляет не более трех процентов от общего количества галактик.
Со временем запасы вещества в ядрах звездных ассоциаций полностью исчерпываются, и неправильная галактика постепенно исчезает из оптических наблюдений. Ее остатки могут наблюдаться в виде отдельных звезд, расположенных на некотором удалении от невидимого тела центрального объекта галактики. Поэтому они воспринимаются как отдельные звезды, рассеянные в пространстве между галактиками. Но и они вскоре исчезают, исчерпав все запасы вещества в их ядрах.
На этом заканчивается первый этап жизни галактики и начинается второй этап ее жизни.
Второй этап жизни галактики начинается с того же невидимого галактического ядра, с тем же защитным «саркофагом». Различие между ними состоит только в том, что на первом этапе жизни в защитном «саркофаге» оставалось N-1 плоских порций вещества четвертой иерархии (одна такая порция вещества была израсходована на образование исчезнувшего населения галактики), а на втором этапе развития галактики в защитном «саркофаге» ее ядра останется уже N-2 плоских порций вещества.
Так же как и на первом этапе жизни, ядро второго спутника галактики, удаляясь от галактического ядра, пронизывает толщу полого тела центрального объекта галактики и приближается к его поверхности, где давление на него тела центрального объекта галактики несколько уменьшается, в результате чего ядро спутника галактики увеличивает свою орбитальную скорость. Тело центрального объекта галактики на такую же величину уменьшает скорость вращения вокруг своей оси.
В результате увеличения орбитальной скорости ядра спутника, происходит выбивание встречных ядер звезд из тела центрального объекта галактики в плоскость галактики, в которой он совершает орбитальное движение. Эти ядра звезд начинают орбитальное движение по ускоренно расширяющейся орбите вокруг тела центрального объекта галактики, совпадающее по направлению не только с движением ядра спутника галактики, но и с направлением вращения тела центрального объекта галактики. То же самое происходит и с ядрами звездных ассоциаций, рожденными ядром спутника галактики. Таким образом, формируется кольцо из молодых звезд вблизи тела центрального объекта галактики.
Это происходит как на первом, так и на всех последующих этапах жизни галактики. Но дальнейшее расположение звезд и звездных ассоциаций в плоской составляющей галактики принципиально отличается от расположения их на первом этапе ее жизни.
Если ядро галактики рождает ядро своего первого спутника, то выбрасываемым им звездам и звездным ассоциациям ничего не мешает равномерно расположиться по всей плоской составляющей галактики, образуя вокруг тела центрального объекта галактики звездный диск. Но при рождении ядра второго спутника галактики условия кардинально изменяются. Это связано с тем, что вблизи тела центрального объекта галактики находится ядро первого спутника галактики, которое не успело покинуть диск эллиптической галактики до полной дезинтеграции всего ее звездного населения. Оно продолжает движение по ускоренно раскрывающейся орбите вокруг центрального объекта галактики именно в той плоскости, в которую выбрасываются ядра звезд и звездных ассоциаций ядром второго спутника галактики.
Чем больше вещества содержится в ядре объекта, тем с большей орбитальной скоростью он перемещается вокруг центрального объекта и тем меньше скорость удаления его от центрального объекта. Скорость орбитального движения объекта вокруг центрального объекта обратно пропорциональна скорости удаления его от центрального объекта.
Ядро спутника галактики содержит больше вещества, чем ядра звезд. Поэтому, орбитальная скорость движения ядра спутника галактики вокруг центрального объекта больше орбитальной скорости движения звезд, расположенных в плоской составляющей галактики. Но их радиальная скорость удаления от центрального объекта галактики больше радиальной скорости удаления ядра спутника галактики. Эта закономерность имеет решающее значение в эволюционном развитии галактик.
В результате, звезды плоской составляющей галактики, выброшенные ядром второго спутника галактики из тела центрального объекта галактики, со временем приблизятся к орбите ядра первого спутника галактики.
Поскольку ядро спутника галактики окружено своим персональным пространством, к нему не могут приблизиться звезды и звездные ассоциации плоской составляющей галактики, тоже окруженные персональными пространствами.
http://www.membrana.ru/lenta/?5252 В галактике Андромеды открыты . . . сквозные дыры
18 октября 2005
«Доктор Карл Гордон (Karl Gordon) и его коллеги из университета Аризоны (University of Arizona) опубликовали новое исследование самой известной (после нашей собственной) галактики — Андромеды.
Так были открыты новые детали строения Андромеды, включая . . . удивительные отверстия в самом диске галактики. . .»
Этими «отверстиями» являются персональные пространства звездных ассоциаций, не позволяющие окружающим звездам диска галактики вторгнуться в них.
Так же и ядро первого спутника галактики своим персональным пространством не позволяет приблизиться к себе звездам плоской составляющей галактики. Поэтому ядро первого спутника галактики своим персональным пространством начинает разрезать на две части приближающийся к нему растущий звездный диск галактики, разгоняя их до своей скорости орбитального движения. Так в галактике в процессе формирования ее плоской составляющей начинают появляться два рукава, состоящие из звезд. Они вращаются вокруг центрального объекта галактики со скоростью ядра первого спутника галактики.
В результате того, что скорость удаления от тела центрального объекта галактики звезд, находящихся в рукавах галактики, больше скорости удаления ядра первого спутника галактики, они, пройдя его орбиту, теряют скорость орбитального движения, которую получили от ядра первого спутника галактики. Таким образом, за орбитой ядра первого спутника галактики скорость орбитального движения звезд, составляющих рукава галактики становится меньше, вследствие чего рукава галактики изгибаются, стремясь накрутиться на тело центрального объекта галактики. Поэтому рукава галактики изогнуты в противоположную сторону направления их вращения. Как видим, для объяснения механизма вращения рукавов спиральной галактики нет необходимости прибегать к гаданию на кофейной гуще:
http://www.astronet.ru/db/msg/1196622 Спиральные рукава NGC 4622
21.02.2004
http://images.astronet.ru/pubd/2004/02/22/0001196630/ngc4622_hst.jpg «Помешивая содержимое утренней чашечки кофе и обдумывая космические проблемы, многие астрономы при взгляде на это изображение спиральной галактики NGC 4622, полученное космическим телескопом им. Хаббла, предположили бы, что галактика вращается против часовой стрелки. Великолепные спиральные рукава галактики NGC 4622, находящейся на расстоянии сто миллионов световых лет от Солнца в созвездии Центавра, хорошо прослеживаются по ярким голубоватым звездным скоплениям и темным полосам пыли, напоминая завихрения в чашке кофе . . .»
Этот тип галактик давно обнаружен в наблюдениях, но до сих пор не был приведен механизм их образования. Их назвали спиральными галактиками.
Количество спиральных галактик составляет 77% от общего количества галактик. Это говорит о том, что новые галактики рождаются ядрами скоплений галактик реже, чем они успевают взрослеть.
Ядро первого спутника галактики не только разделяет плоскую составляющую галактики на два рукава, но и сортирует звезды в рукавах в соответствии с количеством вещества, содержащимся в их ядрах. Звезды, в ядрах которых содержится меньше вещества, накапливаются в том рукаве галактики, который перемещается сзади ядра первого спутника галактики, а с большим количеством вещества – сосредотачиваются в рукаве, перемещающемся впереди него. Последствия этого проявятся после того, как в ядрах звезд предельно исчерпается вещество, и галактика перейдет в стадию неправильной галактики. Тогда один из рукавов галактики может исчезнуть, в то время как второй ее рукав будет еще наполнен звездным населением.
Рукава спиральной галактики перемещаются под воздействием ядра первого спутника галактики. Но если галактическую плоскость, предназначенную для размещения рукавов галактики, не успело покинуть не одно, а два ядра спутников галактик, рожденных в предыдущие этапы жизни галактики, то такая галактика будет иметь не два, а три рукава.
Размеры спиральных галактик зависят от их возраста. Форма же их зависит от расположения ядер спутников галактик между их спиралями. В некоторых галактиках ядра их спутников успевают сформировать вокруг себя свое звездное население в персональном пространстве спутника галактики. По конфигурации ветвей спиральных галактик можно определить места расположения спутников галактик, которые могут находиться только между ветвями спиральных галактик, и посчитать их количество в них.
Именно потому, что скорость удаления от центрального объекта галактики звезд, находящихся в рукавах галактики, больше скорости удаления спутника галактики, а орбитальная их скорость меньше орбитальной скорости спутника галактики, создается впечатление, что рукава галактики обхватывают спутник галактики:
http://www.astronet.ru/db/msg/1218243 В рукавах NGC 1097
1.12.2006
http://images.astronet.ru/pubd....720.jpg «Кажется, что спиральные рукава загадочной галактики NGC 1097 обхватывают ее маленького спутника. Это удивительно глубокое изображение пекулярной спиральной системы, известной также как Арп 77, составлено на основании наблюдений с двумя телескопами . . .»
http://www.astronet.ru/db/msg/1177750 M51: космический водоворот
10.07.2002
http://images.astronet.ru/pubd/2002/07/10/0001177750/m51_hallas.jpg «. . .Большая галактика с хорошо развитой спиральной структурой, которая известна также как NGC 5194, возможно, была первой обнаруженной спиральной туманностью. Ее спиральные рукава и полосы пыли явно проходят перед галактикой-спутником (слева) - NGC 5195. . .»
После предельного исчерпания вещества в ядрах звезд и звездных ассоциаций спиральная галактика, так же как и эллиптическая галактика, утратит свою геометрическую форму и превратится в неправильную галактику, в которой будут наблюдаться хаотически разбросанные в плоскости галактики звезды, якобы блуждающие в межгалактическом пространстве. Но даже после их исчезновения, сохранившееся в неприкосновенности вещество невидимого ядра галактики, будет по-прежнему окружено галактическим пространством, не позволяющим вторгнуться в него другим галактикам. Спиральная галактика, как и эллиптическая, возвращается на «круги своя». Как начали галактики свое развитие со своих ядер, так и заканчивают они каждый этап своей жизни невидимым ядром галактики, находящимся в центре галактического пространства.
http://korrespondent.net/tech/science/705533 Черные дыры во Вселенной появились раньше галактик
10 января 2009
Астрономы уже давно пытались понять, что возникает раньше - черные дыры или галактики…
На протяжении многих лет по этому вопросу существовало две теории: либо черные дыры собирали вокруг себя материю, в следствии чего образовались галактики, либо черные дыры появились в уже сформированных галактиках.
Согласно последним научным выводам черные дыры все же возникли раньше галактик.
Это открытие было представлено американскими астрономами на 213-й конференции Американского астрономического общества в Калифорнии.
Исследователи заявили, что в ядре большинства, если не всех галактик, включая Млечный Путь, находятся массивные черные дыры.
"Похоже, что первыми появились черные дыры, - заявил участник исследований, доктор наук Крис Карилли из американской Национальной радиоастрономической обсерватории. - Фактов, свидетельствующих об этом, становится все больше"…»